June 28, 2019 File No. 262018.063 Ms. Corina Forson Chief Hazards Geologist State of Washington Department of Natural Resources Washington Geological Survey 111 Washington Street SE Olympia, Washington 98504 Mr. Scott Black Program Development Manager State of Washington Office of Superintendent of Public Instruction 600 Washington Street Olympia, Washington 98504 Subject: Department of Natural Resources Washington Geological Survey, School Seismic Safety Assessment Project, Contract No. AE 410 - Seismic Evaluation for Dixie School District Dear Ms. Forson and Mr. Black: Reid Middleton and our consultant team, under the direction of The Department of Natural Resources (DNR) Washington Geological Survey (WGS) School Seismic Safety Project, have conducted seismic evaluations of 222 school buildings and 5 fire stations throughout Washington State. This letter is transmitting the results of these seismic assessments for each school district that graciously participated in this statewide study. We understand that you will be forwarding this letter and the accompanying seismic screening reports to each school district for their reference and use. Many disparate studies on improving the seismic safety of our public school buildings have been performed over the last several decades. Experts in building safety, geologic hazards, emergency management, education, and even the news media have been asserting for decades that seismic risks in older public school buildings represent a risk to our communities. The time to act is now, before we have a damaging earthquake and/or tsunami that could be catastrophic. This statewide school seismic safety assessment project provides a unique opportunity to draw attention to the need for statewide seismic safety policies and funding on behalf of all school districts that will help enable school districts to increase the seismic safety of their older buildings to make them safer for students, teachers, staff, parents, and the community. It is not the intent of this study to create an unfunded mandate for school districts to seismically upgrade their schools without associated funding or statewide seismic safety policy support. The overall goal of this study was to screen and evaluate the current levels of seismic vulnerabilities of a statewide selection of our older public school buildings and to use the data EVERETT 728 134th Street SW Suite 200 Everett, WA 98204 425 741-3800 Department of Natural Resources Washington Geological Survey School Seismic Safety Project – Dixie School District June 28, 2019 File No. 262018.063 Page 2 and information to help quantify funding and policy needs to improve the seismic safety of our public schools. In this process, we are using the information to inform not only the Governor and the Legislature of the policy and funding needs for seismically safe schools but also the school districts that participated in the study. #### School Buildings Evaluated in the Dixie School District We appreciate Dixie School District's participation and invaluable assistance in this statewide project. The following school district building was included as part of this study: 1. Dixie Elementary School, Main Building The seismic screening of this building was performed using the American Society of Civil Engineers' Standard 41-17, *Seismic Evaluation and Retrofit of Existing Buildings* (ASCE 41-17), national standard Tier 1 structural and nonstructural seismic screening checklists specific to each building's structure type. The WGS also conducted seismic site class assessments to measure the shear wave velocity and determine the soil site class at each campus. Site class is an approximation of how much soils at a site will amplify earthquake-induced ground motions and is a critical parameter used in seismic design. Reid Middleton subsequently used this information in their seismic screening analyses. The following table is a list of available seismic assessment information used in our study: | School Building | Year | FEMA Building | Structural Drawings | | |---|-------------|---------------------------------------|----------------------|--| | | Constructed | Classification | Available for Review | | | Dixie Elementary School,
Main Building | 1921 | Unreinforced Masonry
Bearing Walls | No | | Detailed descriptions of the seismic screening evaluations of this building can be found in the individual building reports and the ASCE 41-17 Tier 1 screening checklist documents enclosed with this letter. This information will also be available for download on the WGS website: https://www.dnr.wa.gov/programs-and-services/geology/geologic-hazards/earthquakes-and-faults/school-seismic-safety. These Tier 1 seismic screening checklists are often the first step employed by structural engineers when trying to determine the seismic vulnerabilities of existing buildings and to begin a process of mitigating these seismic vulnerabilities. School district facilities management personnel and their design consultants should be able to take advantage of this information to help inform and address seismic risks in existing or future renovation, repair, or modernization projects. Department of Natural Resources Washington Geological Survey School Seismic Safety Project – Dixie School District June 28, 2019 File No. 262018.063 Page 3 It is important to note that information used for these school seismic screenings was limited to available construction drawings and limited site observations by our team of licensed structural engineers to observe the general conditions and configuration of each building being seismically screened. In many cases, construction drawings were not available for review as noted in the table above. Due to the limited scope of the study, our team of engineers were not able to perform more-detailed investigations above ceilings, behind wall finishes, in confined spaces, or in other areas obstructed from view. Where building component seismic adequacy was unknown due to lack of available information, the unknown conditions were indicated as such on the ASCE 41-17 Tier 1 checklists. Additional field investigations are recommended for the "unknown" seismic evaluation checklist items if more-definitive determinations of seismic safety compliance and further development of seismic mitigation strategies are desired. ## **Nonstructural Seismic Screening** The enclosed ASCE 41-17 Tier 1 Nonstructural Seismic Screening checklists can provide immediate guidance on seismic deficiencies in nonstructural elements. Mitigating the risk of earthquake impacts from these nonstructural elements should be addressed as soon as practical by school districts. Some nonstructural elements may be easily mitigated by installing seismic bracing of tall cabinets, moving heavy contents to the bottom of shelving, and adding seismic strapping or bracing to water tanks and overhead elements (light fixtures, mechanical units, piping, fire protection systems, etc.). It is often most economical to mitigate nonstructural seismic hazards when the building is already undergoing mechanical, electrical, plumbing, or architectural upgrades or modernizations. Enclosed with these nonstructural seismic screening checklists are excerpts from the Federal Emergency Management Agency (FEMA) publication E-74 entitled, *Reducing the Risks of Nonstructural Earthquake Damage* (FEMA E-74). We have included these FEMA publication excerpts to help illustrate typical seismic mitigation measures that can potentially be implemented by district facilities and maintenance personnel. #### Structural Seismic Screening The enclosed ASCE 41-17 Tier 1 Structural Seismic Screening checklists have evaluation statements that are reviewed for specific building elements and systems to determine if these items are seismically compliant, noncompliant, not applicable, or unknown. These evaluation statements provide guidance on which structural systems and elements have identified seismic deficiencies and should be investigated further. Further seismic evaluations beyond these seismic screening checklists typically consist of more-detailed seismic structural analyses to better define the seismic vulnerabilities and risks. This information is then used to determine cost-effective ways to seismically improve these buildings with stand-alone seismic upgrade projects or incrementally as part of other ongoing building maintenance, repair, or modernization projects. Consequently, implementing seismic structural mitigation strategies typically requires that they be developed as a part of longer-term capital improvements and modernization programs developed by the school district and their design consultants. Department of Natural Resources Washington Geological Survey School Seismic Safety Project – Dixie School District June 28, 2019 File No. 262018.063 Page 4 ## **Next Steps** Due to the screening nature of the ASCE 41-17 Tier 1 procedures, an in-depth seismic evaluation and analysis of these buildings may be needed before detailed seismic upgrades or improvements, conceptual designs, and probable construction cost estimates are developed. If you have any questions or comments regarding the engineering reports or would like to discuss this further, please contact us. Sincerely, David B. Swanson, P.E., S.E. Principal, LEED AP, F.SEI #### Limitations The professional services described in this document were performed based on available information and limited visual observation of the structures. No other warranty is made as to the professional advice included in this document. This document has been prepared for the exclusive use of the Department of Natural Resources, the Office of the Superintendent of Public Instruction, and this school district and is not intended for use by
other parties, as it may not contain sufficient information for other parties' purposes or their uses. # 1. Dixie, Dixie Elementary School, Main Building # 1.1 Building Description Building Name: Main Building Facility Name: Dixie Elementary School District Name: Dixie ICOS Latitude: 46.141 ICOS Longitude: -118.151 **ICOS** County/District ID: 36101 ICOS Building ID: 18037 ASCE 41 Bldg Type: URM Enrollment: 30 Gross Sq. Ft. : 15,291 Year Built: 1921 Number of Stories: 3 S_{XS BSE-2E}: 0.395 S_{X1 BSE-2E}: 0.218 ASCE 41 Level of Seismicity: Moderate Site Class: D V_{S30}(m/s): 359 Liquefaction Moderate to High Potential: Tsunami Risk: None Structural Drawings Available: No Evaluating Firm: DCI Engineers - Spokane June 2019 Dixie Elementary School is a 15,000-square-foot URM building constructed in 1921. The building is two stories over a daylight basement. The building houses classrooms, storage and mechanical space, and a kitchen in the basement; classrooms, administrative offices, locker rooms, and a gymnasium on the first floor; and classrooms and an auditorium on the second floor. The gym has a narrow, hanging mezzanine originally used for viewing; the access has been restricted as the mezzanine has been deemed unsafe. The exterior walls are URM, while the interior of the building is assumed to be post-and-beam: a number of large wooden posts were observed in the basement. ## 1.1.1 Building Use The building serves as the K-5 elementary school for approximately 40 students in the Dixie School District. ## 1.1.2 Structural System Table 1.1-1. Structural System Description of Dixie Elementary School | Structural System | Description | |---------------------|--| | Structural Roof | The roof is wood trusses with a wood diaphragm. | | Structural Floor(s) | The structural floors are assumed to be wood joists spanning between bearing | | Structural Floor(8) | walls and beams with wood sheathing. | | Foundations | The foundations are assumed to be conventional shallow foundations. | | Crossity System | The gravity system is URM bearing walls at the exterior and post-and-beam at | | Gravity System | the interior. | | Lateral System | The lateral system is URM shear walls at the exterior of the building. | # 1.1.3 Structural System Visual Condition Table 1.1-2. Structural System Condition Description of Dixie Elementary School | Structural System | Description | |---------------------|---| | Structural Roof | Fair. No signs of corrosion, damage or deterioration; access was limited. | | Structural Floor(s) | Good. No signs of corrosion, damage or deterioration. | | Foundations | Unknown. Minor signs of deterioration at southwest corner of building. | | Gravity System | Fair. Substantial cracking visible on gymnasium walls; cracks have translated to both in- and outside faces of the wall. Assessment of cracking by a licensed structural engineer is recommended. | | Lateral System | Fair. Substantial cracking visible on gym walls. Assessment of cracking by a licensed structural engineer is recommended. | # 1.2 Seismic Evaluation Findings #### 1.2.1 Structural Seismic Deficiencies The structural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Table 1-3. Identified Structural Seismic Deficiencies for Dixie Dixie Elementary School Main Building | Deficiency | Description | |------------|-------------| |------------|-------------| The Tier 1 seismic evaluation performed for this school building could not confirm structural seismic deficiencies due to limited access for visual observation and/or lack of existing drawings available for review. Please refer to the next page of this report for the list of structural items marked as "unknown" and commentary indicating the need for further investigation or the likelihood of compliance or non-compliance based on the age of construction. ## 1.2.2 Structural Checklist Items Marked as 'U'nknown Where building structural component seismic adequacy was unknown due to lack of available information or limited observation, the structural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown structural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Table 1-4. Identified Structural Checklist Items Marked as Unknown for Dixie Dixie Elementary School Main Building | Mezzanines C
Weak Story N | No existing drawings and inadequate access to verify; likely noncompliant based on the age of the building. Connection of small mezzanine in gym is unknown but likely noncompliant. | | | | | | | |--|--|--|--|--|--|--|--| | Weak Story N | Connection of small mezzanine in gym is unknown but likely noncompliant. | | | | | | | | | | | | | | | | | Soft Story N | No existing drawings to verify, but stories appear to be largely the same. | | | | | | | | Soft Story | No existing drawings to verify, but stories appear to be largely the same. | | | | | | | | Vertical N | No existing drawings to verify, walls appear continuous to foundation. | | | | | | | | Irregularities | | | | | | | | | | No existing drawings to verify, but stories appear to be largely the same. | | | | | | | | | No existing drawings to verify. | | | | | | | | Torsion | The building is fairly symmetrical; the center of mass is assumed to be relatively similar to the center of igidity. | | | | | | | | Liquefaction | The liquefaction potential of site soils is unknown at this time given available information. Moderate to high iquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by licensed geotechnical engineer to determine liquefaction potential. | | | | | | | | Slope Failure R | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | | | | | | | | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of xpected surface fault ruptures. | | | | | | | | N
Overturning po | No existing drawings to verify, but likely noncompliant based on observations. Interior structure appears to be ost-and-beam construction, while the exterior structure is comprised largely of small wall piers between banks of windows. | | | | | | | | Redundancy N | No existing drawings to verify, but likely compliant based on observation. | | | | | | | | Shear Stress N | No existing drawings to verify, but likely noncompliant. Interior structure appears to be post-and-beam | | | | | | | | Check | onstruction; exterior structure is largely small wall piers between banks of windows on three sides. | | | | | | | | Wall Anchorage N | No existing drawings and inadequate access to verify. | | | | | | | | Wood Ledgers N | No existing drawings and inadequate access to verify. | | | | | | | | Transfer to Shear Walls | No existing drawings and inadequate access to verify. | | | | | | | | Girder-Column
Connection | No existing drawings and inadequate access to verify. | | | | | | | | Proportions N | No existing drawings and inadequate access to verify. | | | | | | | | Masonry Layup N | No existing drawings and inadequate access to verify. | | | | | | | | Openings at Shear
Walls | No existing drawings and inadequate access to verify. | | | | | | | | Openings at Exterior Masonry N Shear Walls | No existing drawings and inadequate access to verify. | | | | | | | | Cross Ties N | No existing drawings and inadequate access to verify. | | | | | | | Table 1-4. Identified Structural Checklist Items Marked as Unknown for Dixie Dixie Elementary School Main Building | Unknown Item | Description | | | | | |---|--|--|--|--|--| | Straight Sheathing No existing drawings and inadequate access to verify diaphragm type. | | | | | | | Spans | No existing drawings and inadequate access to verify diaphragm type. | | | | | | Diagonally | | | | | | | Sheathed and | No existing drawings and inadequate access to varify displayed type | | | | | | Unblocked | No existing drawings and inadequate access to verify diaphragm type. | | | | | | Diaphragms | | | | | | | Stiffness of Wall | No existing discription and in decrease access to vanify | | | | | | Anchors | No existing drawings and inadequate access to verify. | | | | | | Beam | Girder, and Truss Supports,No existing drawings and inadequate access to verify. | | | | | #### 1.3.1 Nonstructural Seismic Deficiencies The nonstructural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-5. Identified Nonstructural Seismic Deficiencies for Dixie
Dixie Elementary School Main Building | Deficiency | Description | |---|--| | CG-8 Overhead Glazing. HR-not required; LS-MH; PR-MH. | | | MC-1 URM Chimneys. HR-LMH; LS-LMH; PR-LMH. | The height to width ratio of the chimney extension above the roof could not be measured due to limitations in access, but it appeared to exceed the limit noted. | | HR-not required: LS-H: PR- | Some bookshelves and cabinets exceeding this height-to-width ratio were observed and did not appear to be anchored to the structure. | #### 1.3.2 Nonstructural Checklist Items Marked as 'U'nknown Where building nonstructural component seismic adequacy was unknown due to lack of available information or limited observation, the nonstructural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown nonstructural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-6. Identified Nonstructural Checklist Items Marked as Unknown for Dixie Dixie Elementary School Main Building | Unknown Item | Description | |--|--| | P-1 Unreinforced Masonry.
HR-LMH; LS-LMH; PR-
LMH. | The tops of the interior walls could not be observed although, based on the building type it is assumed that all of the URM walls are bearing and/or tied into the floor/roof framing. | | P-2 Heavy Partitions
Supported by Ceilings. HR-
LMH; LS-LMH; PR-LMH. | The tops of the interior walls could not be observed although, based on the building type it is assumed that all of the URM walls are bearing and/or tied into the floor/roof framing. | | C-1 Suspended Lath and
Plaster. HR-H; LS-MH; PR-
LMH. | The ceiling details could not be observed, but the ceiling appeared to be direct applied. | | PCOA-1 URM Parapets or
Cornices. HR-LMH; LS-
LMH; PR-LMH. | Building drawings were not available and this configuration could not be observed. | | MC-2 Anchorage. HR-LMH;
LS-LMH; PR-LMH. | This condition could not be observed. | | S-1 Stair Enclosures. HR-not required; LS-LMH; PR-LMH. | Building drawings were unavailable and this condition could not be observed. | | S-2 Stair Details. HR-not required; LS-LMH; PR-LMH. | Building drawings were unavailable and this condition could not be observed; likely not capable of accommodating drift. | | CF-3 Fall-Prone Contents.
HR-not required; LS-H; PR-H. | Some contents were observed stored on top of cabinets, but their weights are unknown. | | ME-1 Fall-Prone Equipment.
HR-not required; LS-H; PR-H. | Items could not be visually verified during site visit. | | ME-2 In-Line Equipment. HR-not required; LS-H; PR-H. | Items could not be visually verified during site visit. | Figure 1-1. Large wood post in basement mechanical room. Figure 1-2. Basement kitchen area Figure 1-3. Plaque denoting construction date and historic registry. Figure 1-4. Stairs from main floor to front entry. Stairwells on either end of building provide access from basement to top floor. Figure 1-5. View of gymnasium, looking east. Figure 1-6. View of gymnasium's east wall from mezzanine. It was noted the mezzanine was structurally questionable during visit. Cracks can be seen near far corner of gym. Figure 1-7. Cracks in the west wall of the gym. Figure 1-8. West end of the building; doorway and window on far-right side of picture are at stairway. Figure 1-9. South wall of building at the gym. Some foundation wall deterioration is visible at base of wall. Figure 1-10. Southeast corner of gym. Cracks matching those inside can be seen near corner. # Dixie, Dixie Elementary School, Main Building # 17-2 Collapse Prevention Basic Configuration Checklist Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ## **Low Seismicity** #### **Building System - General** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|---|---|----|-----|---|---| | Load Path | The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Tier 2: Sec. 5.4.1.1; Commentary: Sec. A.2.1.10) | | | | X | No existing drawings and inadequate access to verify; likely noncompliant based on the age of the building. | | Adjacent Buildings | The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Tier 2: Sec. 5.4.1.2; Commentary: Sec. A.2.1.2) | X | | | | No adjacent structures. | | Mezzanines | Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Tier 2: Sec. 5.4.1.3; Commentary: Sec. A.2.1.3) | | | | X | Connection of small mezzanine in gym is unknown but likely noncompliant. | #### **Building System - Building Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------|--|---|----|-----|---|--| | Weak Story | The sum of the shear strengths of the seismic-
force-resisting system in any story in each
direction is not less than 80% of the strength in
the adjacent story above. (Tier 2: Sec. 5.4.2.1;
Commentary: Sec. A.2.2.2) | | | | X | No existing drawings to verify, but stories appear to be largely the same. | | Soft Story | The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Tier 2: Sec. 5.4.2.2; Commentary: Sec. A.2.2.3) | | | | X | No existing drawings to verify, but stories appear to be largely the same. | | Vertical Irregularities | All vertical elements in the seismic-forceresisting system are continuous to the foundation. (Tier 2: Sec. 5.4.2.3; Commentary: Sec. A.2.2.4) | | | | X | No existing drawings to verify, walls appear continuous to foundation. | | Geometry | There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Tier 2: Sec. 5.4.2.4; Commentary: Sec. A.2.2.5) | | X | No existing drawings to verify, but stories appear to be largely the same. | |----------|--|--|---|---| | Mass | There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Tier 2: Sec. 5.4.2.5; Commentary: Sec. A.2.2.6) | | X | No existing drawings to verify. | | Torsion | The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Tier 2: Sec. 5.4.2.6; Commentary: Sec. A.2.2.7) | | X | The building is fairly symmetrical; the center of mass is assumed to be relatively similar to the center of rigidity. | # Moderate Seismicity (Complete the Following Items in Addition to the Items for Low Seismicity) # **Geologic Site Hazards** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------------
--|---|----|-----|---|---| | Liquefaction | Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.1) | | | | X | The liquefaction potential of site soils is unknown at this time given available information. Moderate to high liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.2) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault Rupture | Surface fault rupture and surface displacement at the building site are not anticipated. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.3) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of expected surface fault ruptures. | # High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) ## **Foundation Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------------------|---|---|----|-----|---|---| | Overturning | The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6Sa. (Tier 2: Sec. 5.4.3.3; Commentary: Sec. A.6.2.1) | | | | X | No existing drawings to verify, but likely noncompliant based on observations. Interior structure appears to be post-and-beam construction, while the exterior structure is comprised largely of small wall piers between banks of windows. | | Ties Between
Foundation Elements | The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Tier 2: Sec. 5.4.3.4; Commentary: Sec. A.6.2.2) | X | | | | Slab-on-grade present. | # 17-36 Collapse Prevention Structural Checklist for Building Types URM and URMa Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. # Low and Moderate Seismicity ## **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|---|---|----|-----|---|---| | Redundancy | The number of lines of shear walls in each principal direction is greater than or equal to 2. (Tier 2: Sec. 5.5.1.1; Commentary: Sec. A.3.2.1.1) | | | | X | No existing drawings to verify, but likely compliant based on observation. | | Shear Stress Check | The shear stress in the unreinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than 30 lb/in.2 (0.21 MPa) for clay units and 70 lb/in.2 (0.48 MPa) for concrete units. (Tier 2: Sec. 5.5.3.1.1; Commentary: Sec. A.3.2.5.1) | | | | X | No existing drawings to verify, but likely noncompliant. Interior structure appears to be post-and-beam construction; exterior structure is largely small wall piers between banks of windows on three sides. | #### **Connections** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------------------|--|---|----|-----|---|---| | Wall Anchorage | Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Tier 2: Sec. 5.7.1.1; Commentary: Sec. A.5.1.1) | | | | X | No existing drawings and inadequate access to verify. | | Wood Ledgers | The connection between the wall panels and the diaphragm does not induce cross-grain bending or tension in the wood ledgers. (Tier 2: Sec. 5.7.1.3; Commentary: Sec. A.5.1.2) | | | | X | No existing drawings and inadequate access to verify. | | Transfer to Shear Walls | Diaphragms are connected for transfer of seismic forces to the shear walls. (Tier 2: Sec. 5.7.2; Commentary: Sec. A.5.2.1) | | | | X | No existing drawings and inadequate access to verify. | | Girder-Column
Connection | There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Tier 2: Sec. 5.7.4.1; Commentary: Sec. A.5.4.1) | | | | X | No existing drawings and inadequate access to verify. | # High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) ## **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|---|---|----|-----|---|---| | Proportions | The height-to-thickness ratio of the shear walls at each story is less than the following: Top story of multi-story building – 9; First story of multi-story building – 15; All other conditions – 13. (Tier 2: Sec. 5.5.3.1.2; Commentary: Sec. A.3.2.5.2) | | | | X | No existing drawings and inadequate access to verify. | | Masonry Layup | Filled collar joints of multi-wythe masonry walls have negligible voids. (Tier 2: Sec. 5.5.3.4.1; Commentary: Sec. A.3.2.5.3) | | | | X | No existing drawings and inadequate access to verify. | ## **Diaphragms (Stiff or Flexible)** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |----------------------------|--|---|----|-----|---|---| | Openings at Shear
Walls | Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.4) | | | | X | No existing drawings and inadequate access to verify. | | | Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 8 ft (2.4 m) long. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.6) | | | | X | No existing drawings and inadequate access to verify. | ## Flexible Diaphragms | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|--| | Cross Ties | There are continuous cross ties between diaphragm chords. (Tier 2: Sec. 5.6.1.2; Commentary: Sec. A.4.1.2) | | | | X | No existing drawings and inadequate access to verify. | | Straight Sheathing | All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Tier 2:
Sec. 5.6.2; Commentary: Sec. A.4.2.1) | | | | X | No existing drawings and inadequate access to verify diaphragm type. | | Spans | All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.2) | | | | X | No existing drawings and inadequate access to verify diaphragm type. | | Diagonally Sheathed
and Unblocked
Diaphragms | All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and aspect ratios less than or equal to 4 to-1. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.3) | | | | X | No existing drawings and inadequate access to verify diaphragm type. | | Other Diaphragms | The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Tier 2: Sec. 5.6.5; Commentary: Sec. A.4.7.1) | X | | | | | #### **Connections** | EVALUATION ITEM EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------------------------|---|----|-----|---|---------| |--------------------------------------|---|----|-----|---|---------| | Stiffness of Wall
Anchors | Anchors of concrete or masonry walls to wood structural elements are installed taut and are stiff enough to limit the relative movement between the wall and the diaphragm to no greater than 1/8 in. before engagement of the anchors. (Tier 2: Sec. 5.7.1.2; Commentary: Sec. A.5.1.4) | | X | No existing drawings and inadequate access to verify. | |-------------------------------------|--|--|---|---| | Beam, Girder, and
Truss Supports | Beams, girders, and trusses supported by unreinforced masonry walls or pilasters have independent secondary columns for support of vertical loads. (Tier 2: Sec. 5.7.4.4; Commentary: Sec. A.5.4.5) | | X | No existing drawings and inadequate access to verify. | # Dixie, Dixie Elementary School, Main Building # 17-38 Nonstructural Checklist Notes: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown. Performance Level: HR = Hazards Reduced, LS = Life Safety, and PR = Position Retention. Level of Seismicity: L = Low, M = Moderate, and H = High ## **Life Safety Systems** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|--| | LSS-1 Fire Suppression
Piping. HR-not required;
LS-LMH; PR-LMH. | Fire suppression piping is anchored and braced in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.1) | | | X | | The building does not have a fire suppression system. | | LSS-2 Flexible
Couplings. HR-not
required; LS-LMH; PR-
LMH. | Fire suppression piping has flexible couplings in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.2) | | | X | | The building does not have a fire suppression system. | | LSS-3 Emergency
Power. HR-not required;
LS-LMH; PR-LMH. | Equipment used to power or control Life Safety systems is anchored or braced. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.1) | | | X | | The building does not have emergency power. | | LSS-4 Stair and Smoke
Ducts. HR-not required;
LS-LMH; PR-LMH. | Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.1) | | | X | | The stairs are open, pressurization and smoke duct controls are not present. | | LSS-5 Sprinkler Ceiling
Clearance. HR-not
required; LS-MH; PR-
MH. | Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.3) | | | X | | The building does not have a fire suppression system. | | LSS-6 Emergency
Lighting. HR-not
required; LS-not
required; PR-LMH | Emergency and egress lighting equipment is anchored or braced. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.1) | | | X | | | #### **Hazardous Materials** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|-------------------------------------| | HM-1 Hazardous
Material Equipment. HR-
LMH; LS-LMH; PR-
LMH. | Equipment mounted on vibration isolators and containing hazardous material is equipped with restraints or snubbers. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.2) | | | X | | No hazardous material was observed. | | HM-2 Hazardous
Material Storage. HR-
LMH; LS-LMH; PR-
LMH. | Breakable containers that hold hazardous material, including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods. (Tier 2: Sec. 13.8.3; Commentary: Sec. A.7.15.1) | | | X | | No hazardous material was observed. | | HM-3 Hazardous
Material Distribution.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | | X | | No hazardous material was observed. | | HM-4 Shutoff Valves.
HR-MH; LS-MH; PR-
MH. | Piping containing hazardous material, including natural gas, has shutoff valves or other devices to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.3) | | X | No hazardous material was observed. | |--|--|--|---|-------------------------------------| | HM-5 Flexible
Couplings. HR-LMH;
LS-LMH; PR-LMH. | Hazardous material ductwork and piping, including natural gas piping, have flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.15.4) | | X | No hazardous material was observed. | | HM-6 Piping or Ducts
Crossing Seismic Joints.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5, 13.7.6; Commentary: Sec. A.7.13.6) | | X | No hazardous material was observed. | ## **Partitions** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|--| | P-1 Unreinforced
Masonry. HR-LMH; LS-
LMH; PR-LMH. | Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft (3.0 m) in Low or Moderate Seismicity, or at most 6 ft (1.8 m) in High Seismicity. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.1) | | | | X | The tops of the interior walls could not be observed although, based on the building type it is assumed that all of the URM walls are bearing and/or tied into the floor/roof framing. | | P-2 Heavy Partitions
Supported by Ceilings.
HR-LMH; LS-LMH; PR-
LMH. | The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | | X | The tops of the interior walls could not be observed although, based on the building type it is assumed that all of the URM walls are bearing and/or tied into the floor/roof framing. | | P-3 Drift. HR-not
required; LS-MH; PR-
MH. | Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.2) | | | X | | No rigid cementitious partitions were observed. | | P-4 Light Partitions Supported by Ceilings. HR-not required; LS-not required; PR-MH. | The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | | | P-5 Structural
Separations. HR-not
required; LS-not
required; PR-MH. | Partitions that cross structural separations have seismic or control joints. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.3) | | | X | | | | P-6 Tops. HR-not | The tops of ceiling-high framed or panelized | | | | | |------------------|---|--|---|--|--| | required; LS-not | partitions have lateral bracing to the structure at | | v | | | | 1 , | a spacing equal to or less than 6 ft (1.8 m). (Tier | | Λ | | | |
required; PR-MH. | 2: Sec. 13.6.2; Commentary: Sec. A.7.1.4) | | | | | # Ceilings | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | C-1 Suspended Lath and
Plaster. HR-H; LS-MH;
PR-LMH. | Suspended lath and plaster ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | | X | The ceiling details could not be observed, but the ceiling appeared to be direct applied. | | C-2 Suspended Gypsum
Board. HR-not required;
LS-MH; PR-LMH. | Suspended gypsum board ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | Suspended gypsum board ceilings were not observed | | C-3 Integrated Ceilings.
HR-not required; LS-not
required; PR-MH. | Integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) and ceilings of smaller areas that are not surrounded by restraining partitions are laterally restrained at a spacing no greater than 12 ft (3.6 m) with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.2) | | | X | | | | C-4 Edge Clearance. HR-
not required; LS-not
required; PR-MH. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in. (13 mm); in High Seismicity, 3/4 in. (19 mm). (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.4) | | | X | | | | C-5 Continuity Across
Structure Joints. HR-not
required; LS-not
required; PR-MH. | The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.5) | | | X | | | | C-6 Edge Support. HR-
not required; LS-not
required; PR-H. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) are supported by closure angles or channels not less than 2 in. (51 mm) wide. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.6) | | | X | | | | C-7 Seismic Joints. HR-
not required; LS-not
required; PR-H. | Acoustical tile or lay-in panel ceilings have seismic separation joints such that each continuous portion of the ceiling is no more than 2,500 ft2 (232.3 m2) and has a ratio of long-to-short dimension no more than 4-to-1. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.7) | | | X | | | # **Light Fixtures** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|--| | LF-1 Independent
Support. HR-not
required; LS-MH; PR-
MH. | Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Tier 2: Sec. 13.6.4, 13.7.9; Commentary: Sec. A.7.3.2) | | | X | | Light fixtures that weigh
more per square foot than
the ceiling they penetrate
were not observed. | | LF-2 Pendant Supports. HR-not required; LS-not required; PR-H. | Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigidly supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.3) | | | X | | | | LF-3 Lens Covers. HR-
not required; LS-not
required; PR-H. | Lens covers on light fixtures are attached with safety devices. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.4) | | | X | | | # **Cladding and Glazing** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---| | CG-1 Cladding Anchors.
HR-MH; LS-MH; PR-
MH. | Cladding components weighing more than 10 lb/ft2 (0.48 kN/m2) are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft (1.8 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft (1.2 m) (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.1) | | | X | | Heavy cladding components were not observed on the building. | | CG-2 Cladding Isolation.
HR-not required; LS-
MH; PR-MH. | For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.3) | | | X | | The building does not have any steel or concrete moment-frames. | | CG-3 Multi-Story Panels.
HR-MH; LS-MH; PR-
MH. | For multi-story panels attached at more than one floor level, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.4) | | X | The building does not have any multi-story panels. | |--|--|---|---|--| | CG-4 Threaded Rods.
HR-not required; LS-
MH; PR-MH. | Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and Position Retention in any seismicity. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.9) | | X | The building does not have any panel connections. | | CG-5 Panel Connections.
HR-MH; LS-MH; PR-
MH. | Cladding panels are anchored out of plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.5) | | X | The building does not have cladding panels. | | CG-6 Bearing
Connections. HR-MH;
LS-MH; PR-MH. | Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.6) | | Х | The building does not have cladding panels. | | CG-7 Inserts. HR-MH;
LS-MH; PR-MH. | Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.7) | | X | The building does not have concrete cladding panels. | | CG-8 Overhead
Glazing.
HR-not required; LS-
MH; PR-MH. | Glazing panes of any size in curtain walls and individual interior or exterior panes more than 16 ft2 (1.5 m2) in area are laminated annealed or laminated heat-strengthened glass and are detailed to remain in the frame when cracked. (Tier 2: Sec. 13.6.1.5; Commentary: Sec. A.7.4.8) | X | | There are window panes greater than 16 ft2 that do not appear to be laminated. | ## **Masonry Veneer** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | M-1 Ties. HR-not
required; LS-LMH; PR-
LMH. | Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every 2-2/3 ft2 (0.25 m2), and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in. (914 mm); for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (610 mm). (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.1) | | | X | | Masonry veneer is not present at this building. | | M-2 Shelf Angles. HR-
not required; LS-LMH;
PR-LMH. | Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.2) | | | X | | Masonry veneer is not present at this building. | | M-3 Weakened Planes.
HR-not required; LS-
LMH; PR-LMH. | Masonry veneer is anchored to the backup adjacent to weakened planes, such as at the locations of flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.3) | | | X | | Masonry veneer is not present at this building. | | M-4 Unreinforced
Masonry Backup. HR-
LMH; LS-LMH; PR-
LMH. | There is no unreinforced masonry backup. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.2) | | | X | | There is no unreinforced masonry backup in this building. | | M-5 Stud Tracks. HR-not
required; LS-MH; PR-
MH. | For veneer with coldformed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. (610 mm) on center. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.) | | | X | | Masonry veneer is not present at this building. | | M-6 Anchorage. HR-not
required; LS-MH; PR-
MH. | For veneer with concrete block or masonry backup, the backup is positively anchored to the structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.1) | | | X | | Masonry veneer is not present at this building. | | M-7 Weep Holes. HR-not
required; LS-not
required; PR-MH. | In veneer anchored to stud walls, the veneer has functioning weep holes and base flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.6) | | | X | | | | M-8 Openings. HR-not required; LS-not required; PR-MH. | For veneer with cold-formed-steel stud backup, steel studs frame window and door openings. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.2) | | | X | | | # Parapets, Cornices, Ornamentation, and Appendages | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|----------------------|---|----|-----|---|---| | PCOA-1 URM Parapets
or Cornices. HR-LMH;
LS-LMH; PR-LMH. | | | | | X | Building drawings were
not available and this
configuration could not be
observed. | | PCOA-2 Canopies. HR-not required; LS-LMH; PR-LMH. | Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft (3.0 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft (1.8 m). (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.2) | 2 | K | No canopies were observed. | |--|--|---|---|--| | PCOA-3 Concrete
Parapets. HR-H; LS-MH;
PR-LMH. | Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.3) | 2 | ζ | Based on the building type it is unlikely that there are concrete parapets on this building. | | PCOA-4 Appendages.
HR-MH; LS-MH; PR-
LMH. | Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft (1.8 m). This evaluation statement item does not apply to parapets or cornices covered by other evaluation statements. (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.4) | 2 | K | These types of elements were not observed on this building. | # **Masonry Chimneys** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|--| | MC-1 URM Chimneys.
HR-LMH; LS-LMH; PR-
LMH. | Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.1) | | X | | | The height to width ratio of the chimney extension above the roof could not be measured due to limitations in access, but it appeared to exceed the limit noted. | | MC-2 Anchorage. HR-
LMH; LS-LMH; PR-
LMH. | Masonry chimneys are anchored at each floor level, at the topmost ceiling level, and at the roof. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.2) | | | | X | This condition could not be observed. | ## **Stairs** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|--| | S-1 Stair Enclosures.
HR-not required; LS-
LMH; PR-LMH. | Hollow-clay tile or unreinforced masonry walls around stair enclosures are restrained out of plane and have height-to-thickness ratios not greater than the following: for Life Safety in Low or Moderate Seismicity, 15-to-1; for Life Safety in High Seismicity and for Position Retention in any seismicity, 12-to-1. (Tier 2: Sec. 13.6.2, 13.6.8; Commentary: Sec. A.7.10.1) | | | | X | Building drawings were unavailable and this condition could not be observed. | | | The connection between the stairs and the | | | | | |---------------------------|---|--|--|---|--------------------------| | | structure does not rely on post-installed anchors | | | | | | | in concrete or masonry, and the stair details are | | | X | Building drawings were | | S-2 Stair Details. HR-not | capable of accommodating the drift calculated | | | | unavailable and this | | required; LS-LMH; PR- | using the Quick Check procedure of Section | | | | condition could not be | | LMH. | 4.4.3.1 for moment-frame structures or 0.5 in. | | | | observed; likely not | | LIVITI. | for all other structures without including any | | | | capable of accommodating | | | lateral stiffness contribution from the stairs. | | | | drift. | | | (Tier 2: Sec. 13.6.8; Commentary: Sec. | | | | | | | A.7.10.2) | | | | | # **Contents and Furnishings** | | | | | | | T | |--|---|---|----|-----|---|--| | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |
CF-1 Industrial Storage
Racks. HR-LMH; LS-
MH; PR-MH. | Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/RMI MH 16.1 as modified by ASCE 7, Chapter 15. (Tier 2: Sec. 13.8.1; Commentary: Sec. A.7.11.1) | | | X | | No industrial storage racks of this type were observed. | | CF-2 Tall Narrow
Contents. HR-not
required; LS-H; PR-MH. | Contents more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.2) | | X | | | Some bookshelves and cabinets exceeding this height-to-width ratio were observed and did not appear to be anchored to the structure. | | CF-3 Fall-Prone
Contents. HR-not
required; LS-H; PR-H. | Equipment, stored items, or other contents weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level are braced or otherwise restrained. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.3) | | | | X | Some contents were observed stored on top of cabinets, but their weights are unknown. | | CF-4 Access Floors. HR-
not required; LS-not
required; PR-MH. | Access floors more than 9 in. (229 mm) high are braced. (Tier 2: Sec. 13.6.10; Commentary: Sec. A.7.11.4) | | | X | | | | CF-5 Equipment on
Access Floors. HR-not
required; LS-not
required; PR-MH. | Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Tier 2: Sec. 13.7.7 13.6.10; Commentary: Sec. A.7.11.5) | | | X | | | | CF-6 Suspended
Contents. HR-not
required; LS-not
required; PR-H. | Items suspended without lateral bracing are free to swing from or move with the structure from which they are suspended without damaging themselves or adjoining components. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.6) | | | X | | | # **Mechanical and Electrical Equipment** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | ME-1 Fall-Prone
Equipment. HR-not
required; LS-H; PR-H. | Equipment weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level, and which is not in-line equipment, is braced. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.4) | | | | X | Items could not be visually verified during site visit. | | ME-2 In-Line
Equipment. HR-not
required; LS-H; PR-H. | Equipment installed in line with a duct or piping system, with an operating weight more than 75 lb (34.0 kg), is supported and laterally braced independent of the duct or piping system. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.5) | | | | X | Items could not be visually verified during site visit. | | ME-3 Tall Narrow
Equipment. HR-not
required; LS-H; PR-MH. | Equipment more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.6) | | | X | | Equipment of this type was not observed during the visit. | | ME-4 Mechanical Doors.
HR-not required; LS-not
required; PR-MH. | Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Tier 2: Sec. 13.6.9; Commentary: Sec. A.7.12.7) | | | X | | | | ME-5 Suspended
Equipment. HR-not
required; LS-not
required; PR-H. | Equipment suspended without lateral bracing is free to swing from or move with the structure from which it is suspended without damaging itself or adjoining components. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.8) | | | X | | | | ME-6 Vibration Isolators.
HR-not required; LS-not
required; PR-H. | Equipment mounted on vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.9) | | | X | | | | ME-7 Heavy Equipment.
HR-not required; LS-not
required; PR-H. | Floor supported or platform-supported equipment weighing more than 400 lb (181.4 kg) is anchored to the structure. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.10) | | | X | | | | ME-8 Electrical
Equipment. HR-not
required; LS-not
required; PR-H. | Electrical equipment is laterally braced to the structure. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.11) | | | X | | | | ME-9 Conduit
Couplings. HR-not
required; LS-not
required; PR-H. | Conduit greater than 2.5 in. (64 mm) trade size that is attached to panels, cabinets, or other equipment and is subject to relative seismic displacement has flexible couplings or connections. (Tier 2: Sec. 13.7.8; Commentary: Sec. A.7.12.12) | | | X | | | ## **Piping** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------------|--|---|----|-----|---|---------| | PP-1 Flexible Couplings. | Fluid and gas piping has flexible couplings. | | | | | | | HR-not required; LS-not | (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. | | | X | | | | required; PR-H. | A.7.13.2) | | | | | | | PP-2 Fluid and Gas
Piping. HR-not required;
LS-not required; PR-H. | Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | X | | |---|---|--|---|--| | PP-3 C-Clamps. HR-not required; LS-not required; PR-H. | One-sided C-clamps that support piping larger than 2.5 in. (64 mm) in diameter are restrained. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.5) | | X | | | PP-4 Piping Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.6) | | X | | ## **Ducts** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---------| | D-1 Duct Bracing. HR-
not required; LS-not
required; PR-H. | Rectangular ductwork larger than 6 ft2 (0.56 m2) in cross-sectional area and round ducts larger than 28 in. (711 mm) in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft (9.2 m). The maximum spacing of longitudinal bracing does not exceed 60 ft (18.3 m). (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.2) | | | X | | | | D-2 Duct Support. HR-
not required; LS-not
required; PR-H. | Ducts are not supported by piping or electrical conduit. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.3) | | | X | | | | D-3 Ducts Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Ducts that cross seismic joints or isolation planes or are connected to independent structures have couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.4) | | | X | | | ## Elevators | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | EL-1 Retainer Guards.
HR-not required; LS-H;
PR-H. | Sheaves and drums have cable retainer guards. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.1) | | | X | | The building does not have any elevators. | | | A retainer plate is present at the top and bottom of both car and counterweight. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.2) | | | X | | The building does not have any elevators. | | EL-3 Elevator
Equipment. HR-not
required; LS-not
required; PR-H. | Equipment, piping, and other components that are part of the elevator system are anchored. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.3) | | | X | | | | EL-4 Seismic Switch. HR-not required; LS-not required; PR-H. | Elevators capable of operating at speeds of 150 ft/min or faster are equipped with seismic switches that meet the requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.4) | X | | | |---
---|---|--|--| | EL-5 Shaft Walls. HR-
not required; LS-not
required; PR-H. | Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.5) | X | | | | EL-6 Counterweight
Rails. HR-not required;
LS-not required; PR-H. | All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.6) | X | | | | EL-7 Brackets. HR-not
required; LS-not
required; PR-H. | The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.7) | X | | | | EL-8 Spreader Bracket.
HR-not required; LS-not
required; PR-H. | Spreader brackets are not used to resist seismic forces. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.8) | X | | | | EL-9 Go-Slow Elevators.
HR-not required; LS-not
required; PR-H. | The building has a go-slow elevator system. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.9) | X | | | This page intentionally left blank. **Note:** for seismic design category D, E & F, the flexible sprinkler hose fitting must accommodate at least $1^{\prime\prime}$ of ceiling movement without use of an oversized opening. Alternatively, the sprinkler head must have a $2^{\prime\prime}$ oversize ring or adapter that allows $1^{\prime\prime}$ movement in all directions. Figure G-1. Flexible Sprinkler Drop. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-2. End of Line Restraint. # **Partitions** Figure G-3. Mitigation Schemes for Bracing the Tops of Metal Stud Partitions Walls. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-4. Mitigation Schemes for Bracing the Tops of Metal Stud Partitions Walls. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) **Notes:** Glazed partition shown in full-height nonbearing stud wall. Nonstructural surround must be designed to provide in-plane and out-of-plane restraint for glazing assembly without delivering any loads to the glazing. Glass-to-frame clearance requirements are dependent on anticipated structural drift. Where partition is isolated from structural drift, clearance requirements are reduced. Refer to building code for specific requirements. Safety glass (laminated, tempered, etc.) will reduce the hazard in case of breakage during an earthquake. See Example 6.3.1.4 for related discussion. Figure G-5. Full-height Glazed Partition. Figure G-6. Full-height Heavy Partition. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-7. Typical Glass Block Panel Details. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) # Ceilings Figure G-8. Suspension System for Acoustic Lay-in Panel Ceilings – Edge Conditions. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) **Note:** Compression strut shall not replace hanger wire. Compression strut consists of a steel section attached to main runner with 2 - #12 sheet metal screws and to structure with 2 - #12 screws to wood or 1/4" min. expansion anchor to structure. Size of strut is dependent on distance between ceiling and structure (I/r ≤ 200). A 1" diameter conduit can be used for up to 6', a 1-5/8" X 1-1/4" metal stud can be used for up to 10' Per DSA IR 25-5, ceiling areas less than 144 sq. ft, or fire rated ceilings less than 96 sq. ft., surrounded by walls braced to the structure above do not require lateral bracing assemblies when they are attached to two adjacent walls. (ASTM E580 does not require lateral bracing assemblies for ceilings less than 1000 sq. ft.; see text.) Figure G-9. Suspension System for Acoustic Lay-in Panel Ceilings – General Bracing Assembly. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-10. Suspension System for Acoustic Lay-in Panel Ceilings – General Bracing Layout. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Note: See California DSA IR 25-5 (06-22-09) for additional information. Figure G-11. Suspension System for Acoustic Lay-in Panel Ceilings – Overhead Attachment Details. ### a) Gypsum board attached directly to ceiling joists ## b) Gypsum board attached directly to furring strips (hat channel or similar) Note: Commonly used details shown; no special seismic details are required as long as furring and gypboard secured. Check for certified assemblies (UL listed, FM approved, etc.) if fire or sound rating required. Figure G-12. Gypsum Board Ceiling Applied Directly to Structure. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-13. Retrofit Detail for Existing Lath and Plaster. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-14. Diagrammatic View of Suspended Heavy Ceiling Grid and Lateral Bracing. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) A-A Main Runner at Perimeter **B-B Cross Runner at Perimeter** Figure G-15. Perimeter Details for Suspended Gypsum Board Ceiling. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) #### See figure 6.3.4.1-7 for connections of bracing and hanger wire to structure **Note:** Compression strut shall not replace hanger wire. Compresion strut consists of a steel section attached to main runner with 2 - #12 sheet metal screws and to structure with 2 - #12 screws to wood or $1/4^{\circ}$ min. expansion anchor to concrete. Size of strut is dependent on distance between ceiling and structure ($I/r \le 200$). A 1" diameter conduit can be used for up to 6', a $1-5/8^{\circ}$ X $1-1/4^{\circ}$ metal stud can be used for up to 10'. See figure 6.3.4.1-6 for example of bracing assembly. Figure G-16. Details for Lateral Bracing Assembly for Suspended Gypsum Board Ceiling. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) ## **Light Fixtures** Figure G-17. Recessed Light Fixture in suspended Ceiling (Fixture Weight < 10 pounds). (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-18. Recessed Light Fixture in suspended Ceiling (Fixture Weight 10 to 56 pounds). (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) # **Contents and Furnishings** Figure G-19. Light Storage Racks. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) **Note:** Purchase storage racks designed for seismic resistance. Storage racks may be classified as either nonstructural elements or nonbuilding structures depending upon their size and support conditions. Check the applicable code to see which provisions apply. Figure G-20. Industrial Storage Racks. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-21. Wall-mounted File Cabinets. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-22. Base Anchored File Cabinets. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) **Note:** Engineering required for all permanent floor-supported cabinets or shelving over 6 feet tall. Details shown are adequate for typical shelving 6 feet or less in height. Figure G-23. Anchorage of Freestanding Book Cases Arranged Back to Back. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-24. Desktop Computers and Accessories. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) ### **Cantilevered Access Floor Pedestal** ### **Braced Access Floor Pedestal** (use for tall floors or where pedestals are not strong enough to resist seismic forces) Note: For new floors in areas of high seismicity, purchase and install systems that meet the applicable code provisions for "special access floors." # Figure G-25. Equipment Mounted on Access Floor. Equipment installed on an independent steel platform within a raised floor Figure G-26. Equipment Mounted on Access Floor – Independent Base. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Equipment restrained with cables beneath a raised floor Figure G-27. Equipment Mounted on Access Floor – Cable Braced. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Equipment anchored with vertical rods beneath a raised floor Figure G-28. Equipment Mounted on Access Floor – Tie-down Rods. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) # Mechanical and Electrical Equipment Note: Rigidly mounted equipment shall have flexible connections for the fuel lines and piping. Figure G-29. Rigidly Floor-mounted Equipment with Added Angles. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Supplemental base with restrained spring isolators Supplemental base with open springs and all-directional snubbers Supplemental base with open springs and one-directional snubbers Figure G-30. HVAC Equipment with Vibration Isolation. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-31. Rooftop HVAC Equipment. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-32. Suspended Equipment. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-33. Water Heater Strapping to Backing Wall. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-34. Water Heater – Strapping at Corner Installation. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-35. Water Heater – Base Mounted. (FEMA E-74, 2012, Reducing the Risks of Nonstructural
Earthquake Damage) Figure G-36. Rigid Bracing – Single Pipe Transverse. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-37. Cable Bracing – Single Pipe Transverse. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) ## **Electrical and Communications** Figure G-38. Electrical Control Panels, Motor Controls Centers, or Switchgear. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Wall-Mounted Figure G-39. Freestanding and Wall-mounted Electrical Control Panels, Motor Controls Centers, or Switchgear. Figure G-40. Emergency Generator. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage)